Neurotransmitter Actions
Katya Likhtik

• What is a neurotransmitter?

• Under what conditions and how are they released?

• What happens to the presynaptic and the postsynaptic neuron once they are released?
The 18th and 19th C debate about the nature of communication in the nervous system:
Electrical or Chemical??

After a presynaptic neuron is stimulated the delay is about 0.3 ms for the postsynaptic neuron to respond. This is too long for electric transmission.

If you stimulate the postsynaptic neuron, no response in the presynaptic one. Polarization of communication between neurons.

Stimulation of presynaptic neuron may result in postsynaptic inhibition. Difficult to explain in terms of direct passage of electrical event.

No relationship between the magnitude of the pre and postsynaptic electrical event.
Otto Lowei (1921)

"Vagusstoff" (actually Acetylcholine)
Not to say that there aren’t electrical synapses!!

Gap junctions – cell to cell pores that allow ions and very small molecules to pass from the cytoplasm of one cell to the next.

Figure 1–11. Dye coupling via an electrical synapse. a: Photograph of two adjoining neurons isolated in a culture dish. The lower cell (neuron 1) was injected with the fluorescent dye Lucifer yellow by one of the authors (Kaczmarek et al., 1979). b: The fluorescent image shows that dye has passed into neuron 2.
Before a substance can be called a neurotransmitter:

1. Presynaptic terminal should contain a store of the substance (preferably in a sequestered form)

2. Applying the substance to a postsynaptic cell should mimic the effects caused by stimulating the presynaptic terminal

3. If a drug is known to block a neurotransmitter, it should have the same effect on this transmitter if it’s applied exogenously

4. A mechanism for the synthesis of this transmitter must exist (including the appropriate precursors/enzymes in the terminal)

5. A mechanism for inactivation of the transmitter must exist (catabolic enzymes for its degradation/uptake system, etc)
The type of communication between neurons discussed in this class
What kinds of neurotransmitters are there?

AMINO ACID transmitters

Glutamate
GABA (γ-aminobutyric acid)

Most transmitters are small, water-soluble molecules containing amine and (in the case of amino acid transmitters) carboxyl groups. These chemical groups cause the transmitters to be ionized at physiological pH and thus reduces the probability of passing the blood-brain-barrier (BBB!).
Acetylcholine (Ach)

Present both in the central and peripheral nervous systems (CNS & PNS)

Synthesized by the combination of AcetylCoA, which is a product of the Krebbs cycle in the mitochondria, and choline, which is obtained from food (egg yolk, legumes).

In the PNS, it is the transmitter of the neuromuscular junction—between neurons and all types of muscle (cardiac/smooth/skeletal) and thus is responsible for muscle contraction.
The monoamine neurotransmitters

Dopamine (DA) – concentrated in neurons of the Ventral Tegmental Area (VTA) and in the substantia nigra of the basal ganglia. Important for motion, mood, reward, schizophrenia, etc.

NE – first discovered in the sympathetic branch of the autonomic nervous system. Cell groups containing NE found in the locus coeruleus (LC), which projects all over the brain and partakes in The sleep-wake cycle, attention, vigilance.

EPI – sympathoexcitatory, found in the adrenal medulla and in cell groups of the medulla (oblongata)
Serotonin (5HT)

First identified as an element found in the blood that aided its clotting and produced vasoconstriction (originating from “serum” + having an effect on muscle “tone” resulted in the name serotonin)

5HT neurons found mostly in the raphe nuclei that are located in the brainstem and that innervate all major brain areas

5HT has been found to be important for food intake, aggression, mood. It is manipulated by antipsychotic drugs. Variations of serotonin (slight changes in its chemical structure) result in hallucinogens such as LSD, ecstasy, mescaline.
Vesicle transport to the terminal is via microtubules

The synthesis of vesicles occurs in the cell soma, where they pinch off the Golgi apparatus and are transported to the terminal along microtubules in the axon.

Figure 2-9. Vesicles are transported from soma to axon terminal. Vesicles and organelles are synthesized in the cell body and transported (arrows) by an active process down the axon toward its terminal. When the axon is tied off (ligated), vesicles are seen to accumulate in the axon on the side of the ligature proximal to the cell body. Experiments of this type were first done by Paul Weiss and colleagues in the 1930s.
Vesicles are transported to the terminal via an active process.

Vesicle transport requires ATP hydrolysis by a small molecular “motor” called kinesin.
Loading neurotransmitters into vesicles at the terminal

The proton pump hydrolizes ATP and produces a proton gradient and membrane potential across the granule membrane. The amine transporter binds an uncharged amine and couples its transport INTO the vesicle with the H\(^+\) exit OUT of it. The amine then becomes protonated at the acidic pH of the vesicle and is stuck inside the vesicle.
Vesicles aggregate at the presynaptic terminal at the synapse

A synaptic cleft in the CNS separates the pre and postsynaptic terminals by about 20-30 nm

Synapses can be axodendritic, axosomatic and axoaxonic

Active zones- areas of the presynaptic membrane that are sites of vesicle attachment and neurotransmitter release
Gray’s Type I and Type II synapse structure

Note the differences in localization of synapses, vesicle shape, the shape of the synaptic cleft.

Type I - usually glutamatergic, excitatory
Type II - usually GABAergic, inhibitory
The structure of the neuromuscular junction (NMJ) in the PNS

The junctional folds found on the postsynaptic side of the NMJ increase the number of Ach receptors that are exposed to release of neurotransmitter, resulting in very efficient transmission.
Neurotransmitter Release is Ca++ dependent

Release of neurotransmitters is dependent upon the entry of Ca++ into the presynaptic terminal through voltage sensitive Ca++ channels, which are clustered near release sites.

Voltage increases sufficient to open Ca++ channels usually occurs with the arrival of an action potential to the terminal. The terminal can also be stimulated with an electrode to increase voltage.

TTX blocks Na+ channels

TEA blocks K+ channels
The time between docking and exocytosis is less than 200 ms. In order for vesicles to dock and to be primed for release, ATP is necessary. Thus mitochondria are present at the terminal.
The SNARE complex model of vesicular fusion

As vesicles fuse with the membrane the SNARE complex forms as a result of the close association of proteins found on the membranes of the vesicle and plasma membrane.

Toxins, such as botulinum toxin and tetanus toxin, selectively cleave different proteins of the SNARE complex, preventing vesicle fusion and neurotransmitter release, thus causing paralysis. (Botox is also used in plastic surgeries to eliminate wrinkles of the forehead.)
Vesicle endocytosis and recycling

After neurotransmitter release, the vesicular membrane is coated with the protein clathrin, thus identifying it for recycling. The clathrin coated pits are transferred to the endosome, where the membrane is reused for new vesicles and refilled with neurotransmitter.
Neurotransmitters are released in “quanta”

Spontaneous miniature end plate potentials (MEPPs) are usually about 0.5mV. Stimulation of the presynaptic terminal causes post-synaptic end plate potential (EPP) amplitudes to be at multiples of the MEPP. With iontophoretic application of Ach, it was estimated that about 5000 molecules (or a quantum) of Ach are released synchronously into the synaptic cleft to generate a single MEPP.

1950s, Katz et al., suggested that the packets of quanta of Ach correspond to neurotransmitter content of a single vesicle.
Removal of the neurotransmitter from the synaptic cleft

Timely removal prevents desensitization of receptors and interference with new incoming signals.

Mechanisms

Enzymatic degradation:
Acetylcholinesterase

A nearly 100% efficient enzyme. Ach molecules are hydrolized as rapidly as they can diffuse into the active site. Forms acetate and choline.

Breaks down 14,000 Ach mols/sec (1 molecule in 70 µsec)
Degradation of Catecholamines

Monoamine Oxidase (MAO) – an enzyme that catalyzes the neurotransmitter to its corresponding aldehyde. This form can be broken down further and excreted. MAO is located in the mitochondria of catecholaminergic terminals.

Catechol-O-Methyl-Transferase (COMT) – methylates a hydroxyl group of the catechol nucleus. The products can then also be excreted.

Antidepressant drugs act on these enzymes. E.g. Pargyline – a clinically effective antidepressant is an MAO inhibitor, increases DA levels in the CNS.
The most common mechanism: Reuptake by transporter molecules

Transporter molecules are in the presynaptic nerve terminals and glial cells. Transporter molecules have binding constants of <25 mM.

Norepinephrine
Dopamine
Cocaine and amphetamine prevent reuptake of DA and NE
Glutamate
GABA
Glycine
Choline (after acetylcholine is broken down, choline is taken into the presynaptic nerve terminal for reuse)
Postsynaptic actions of neurotransmitters are receptor dependent

Ligand-gated ion channels – activated by the binding of a neurotransmitter

Binding of the ligand stabilizes the active conformation of the receptor, thereby opening an ion channel, which is created by the arrangement of four to five receptor subunits.

e.g. Nicotinic receptor for Ach
An example of a ligand gated ion channel

The nicotinic Ach receptor. It needs two molecules of Ach in order to open. It is permeable to cations. It is found in the NMJ, autonomic ganglia, hippocampus, thalamus, etc.
G-protein mediated receptors

G-protein is a guanyl nucleotide-binding protein. In its inactive state it has a GDP bound to it, whereas in its active state it has a GTP bound to it. In its active state, the protein can interact with an effector system (such as an ion channel).
Second messenger systems

The G protein activates a second messenger which then activates any number of other mechanisms inside the cell, which can alter the intracellular calcium concentration, open/close channels, alter gene production.

Figure 12-6. Second messenger–mediated receptor–channel coupling. In some cases neither the neurotransmitter receptor (R) nor the G protein (G) interacts directly with the ion channel. In these cases an intracellular second messenger influences ion channel activity. Compare with Figures 11-8 and 12-2. E, enzyme regulated by G protein.
Amplification of second messenger message
The postsynaptic EPSP

When the channel opens, both Na+ and K+ can flow through the channel. Based on the resting membrane potential (near -70 mV) and the equilibrium potentials for each ion, we can see that there is a tremendous potential difference for Na+, yet a very small differential for K+. As a result, at rest, acetylcholine triggers a rapid influx of Na+. This influx of Na+ leads to an excitatory postsynaptic potential.
The postsynaptic IPSP

An inhibitory postsynaptic potential is often mediated by the opening of chloride channels which cause an influx of Cl⁻ into the cell.
Modifying Mood and Easing Anxiety

Mood as predominant emotional state of an individual over time
- Antidepressant drug treatments

Emotion as transient response to environmental, interoceptive, or cognitive stimuli. Anxiety versus fear.
- Anxiolytic drug treatments
First Antidepressants - MAO Inhibitors

Monoamine depletion model of depression (1960s)

Mice given reserpine showed decreased locomotor activity, which was reversed by administration of MAO inhibitors (such as pargyline)

Monoamine Uptake inhibitors (imipramine) also proved useful for treatment of depression, suggesting a presynaptic mode of action
Action of antidepressants and other drugs at serotonergic synapses

SSRI- selective serotonin reuptake inhibitors
The Lag Time Enigma and Antidepressant Action

A substantial lag between the time an antidepressant is administered and relief of symptoms, suggested that changes occur post and not presynaptically.

Prompted the hypothesis that pathogenesis and treatment of depression involves a plasticity/adaptation in relevant neuronal pathways.

The current model suggests second messenger systems that upregulate postsynaptic signaling cascades and result in an increased production of BDNF (brain derived neurotrophic factor)
Psychotherapy and Medication can result in the same thing!!

Figure 61-10 Patients with obsessive-compulsive disorder tend to show hyperactivity in the head of the caudate. This hyperactivity can be reduced in one of two ways: by selective serotonin reuptake inhibitors (top), medication therapy, or cognitive therapy (bottom), psychotherapy.
Pharmacotherapy of Anxiety

“Because I associated the attacks with driving, I reduced my driving to pure necessity. Eventually because I feared another attack and the consequent embarrassment, I avoided all but essential social contact. Ultimately I was frightened to leave my own home.”

An estimated 19 million Americans suffer from anxiety disorders (AADA - Anxiety Disorders Association of America)

Benzodiazepines: Acute anxiety, generalized anxiety disorder (GAD), panic

Antidepressants: Generalized anxiety disorder, panic, obsessive compulsive disorder
Pharmacotherapy of Anxiety

Diazepam - a benzodiazepine that is effective at treating GAD

Works via the GABAa channel (permeable to Cl-). It increases the affinity of GABA for the receptor, thus increasing the Cl- conductance and the hyperpolarizing current.

High concentrations of GABA receptors are found in the limbic system ("the emotional system")